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Impedance of fractal interfaces
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Abstract. We investigate the impedance of two-dimensional electrical networks in the
presence of a fractal boundary both by numerical techniques and by renormalisation.
Boundaries generated by a Koch-curve construction and by a DLA process are considered.
Our results are discussed in connection with measurements of the impedance of electrolytes
in contact with a rough electrode.

1. Introduction

The effect of interface roughness on the impedance of electrolyte/electrode-systems
has been the subject of a number of recent investigations (Liu 1985, Kaplan et al
1987, Sapoval 1987, Bates er al 1988, and references therein.) In this context, porous
electrodes are interesting also from a practical point of view as their large surface
area leads to increased limiting currents in electrochemical devices. Experiments with
metallic electrodes in the frequency range below ~ 10° Hz often show a so-called
constant phase angle (CPA) response where the total impedance depends on frequency
according to Z ~ (iw)™" (Scheider 1975). The exponent n is smaller than unity with a
tendency to decrease with increasing degree of surface roughness.

Most attempts in the literature to explain these observations are based on a model
assuming a constant resistivity within the bulk electrolyte and a certain (complex)
impedance per unit area associated with the interface. The latter describes displacement
and reaction of charges within the electric double layer. Under these assumptions one
may construct an equivalent linear electrical network of constant conductances o
within the electrolyte region and conductance elements o, which are arranged in
accord with the interface geometry. In simplest terms, o; consists of the double-
layer capacitance C in parallel with the transfer (Faradaic) resistance R;, such that
6, = iwC + R!. In the ideal case of a perfectly blocking planar electrode it follows
that Z ~ (iwC)~! for sufficiently low frequencies, and n = 1.

In this type of description the detailed electrochemical processes at the interface
including diffusion currents are ignored (see, for example, Schmickler 1988). Never-
theless, even these simplified models are not completely understood and there remains
the problem of how the impedance Z in such models depends on the geometrical
characteristics of the interface roughness. In particular, one would like to know the
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geometrical conditions which lead to a fractional power law Z ~ (g;)7" with n < L.
Interfacial boundaries with self-similar structure are of special interest in this context.
It has been shown that interfaces containing a distribution of deep, essentially linear
pores with variable width can give rise to a CPA response (Liu 1985, Sapoval 1987),
and the relation n = 3 — D for the exponent n in terms of the fractal dimension D
has been derived in specific cases although it has been demonstrated not to be general
(Keddam and Takenouti 1986, Kaplan et al 1987, Sapoval 1987, Sapoval et al 1988).

The situation is less clear, when vertical and horizontal fluctuations of the boundary
occur on similar scales. In this case the frequently used procedure of approximating
the complete network problem by a reduced network with a tractable, hierarchical
structure may become ambiguous. Alternative attempts to treat the surface roughness
by perturbational methods (Halsey 1987, Ball and Blunt 1988) may be limited to
small-amplitude fluctuations. In this situation it seems necessary to study the impedance
numerically. We undertake here a numerical investigation of two-dimensional networks
with different fractal boundaries. Most of our results are for boundaries generated
by a quadratic Koch curve up to stage N = 4 which implies structural self-similarity
over more than two decades. In the case of a perfectly blocking electrode we find Cpa
behaviour within an intermediate frequency range such that Z —Z{c0) ~ (iw)™", where
n ~ 0.6 and Z(c0) denotes the high-frequency limit of the impedance. The imaginary
part Im Z satisfies a fractional power law within an extended frequency interval of
about three decades. We also consider properties of disordered boundaries constructed
via a diffusion-limited aggregation (DLA) process.

Our model of a Koch boundary allows us to set up a renormalisation scheme,
where renormalised interface elements are constructed from the impedance behaviour
of 4x4 cells attached to the interface. By this method we achieve good agreement
with our numerical results and even quantitative agreement in the special case of real
interface conductances. Finally we summarise our results and give comments regarding
experiments.

2. Koch and DLA boundaries: numerical treatment

Let us first investigate the impedance of an electrolyte in contact with an electrode
of the form of a quadratic Koch curve generated as shown in figure 1. Its fractal
dimension is D = In8/In4 = 1.5. Our system is regarded as an electrical network
associated with the bonds of a two-dimensional square lattice of size L x L with
L = 4N, The Koch electrode at stage N is incorporated in the network as illustrated in
figure 2(a) for N = 2. The counter electrode is represented by the upper edge of the
lattice and is held at a fixed potential ¥ = 1. Bonds which intersect the Koch curve are
regarded as interface bonds with conductance ;. Their endpoints below the boundary
are connected to ground (V' = 0). With the remaining bonds in the region between
the two electrodes we associate a constant (real) conductance ¢, representing the bulk
electrolyte. Periodic boundary conditions are applied in the horizontal directions.

In comparison with an experimental situation it is to be noted that dealing with
an N-independent parameter o, actually implies an N-dependent overall size of the
electrode, L = 4V, Alternatively, considering an electrode with a given overall size L
and a N-dependent smallest length scale ay = L/4" then o; is related to the physical
quantity g, which is the conductance per unit length by ¢, = gay.

For our network defined above we solve Kirchhoff’s equations by a relaxation
method. First we have chosen ¢; real. Results for the total impedance Z, for
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Figure 1. Generation of the Koch-curve electrode.
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Figure 2. (a) Lattice of bulk conductances oy, (bold lines) and interface conductances a;
(dotted lines) across the Koch boundary at stage N = 2. (b) Lattice obtained from (a) by
one step of renormalisation.
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Figure 3. Impedance Zy versus (real) interface conductance ¢;. Symbols refer to numerical
data N =4(0), N =3 (O) and N =2 (x). Full curves represent renormalisation results.

boundaries up to stage N = 4 are shown in figure 3. For relatively high interface
conductance o; > oy, the behaviour of the network is dominated by the bulk and
Z, becomes nearly independent of both o; and N. This means that small cavities
in the boundary are shielded and do not contribute to the total conductance. As
o; decreases the current starts to penetrate successively smaller cavities until the full
potential drop is experienced by all the interface bonds. Then the total conductance
is simply proportional to the N-dependent length of the boundary, Zy' ~ 8¥g,. The
crossover to this regime of saturation occurs near ¢; determined by 8" ¢ ~ a,.
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Figure 4. Real part (a) and
imaginary part (b) of the dynamic
impedance versus frequency. Sym-
bols are as in figure 3. Error bars
explicitly shown refer to cases of
insufficient convergence of the iter-
ation. Full curves represent renor-
malisation results. The straight
line in (b) corresponds to the be-
haviour ImZy ~ 0™ %% of data
with N = 4. Note the difference in
the vertical scale of (a) and (b). The
inset in (a) is the graph of —Im Zy
versus Re Zy (N =4).
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Next we consider the physically more important case of a perfectly blocking
electrode with o, = iwC imaginary. In figure 4 we show the real and imaginary parts
of the impedance versus frequency. Our main observation is that as N increases, the
imaginary part Im Z, develops a fractional power-law dependence in an intermediate
frequency regime. Comparing the results for N = 3 and N = 4 we observe that this
‘anomalous’ regime extends to lower frequencies with increasing N and terminates on
the high-frequency side near w, = 6, /C. As seen from the figure, our data for N = 4 are
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very well represented by the fit InZy ~ o™ ; n = 0.60+0.02 within about three orders
of magnitude in frequency below w,. Outside that regime we have ImZ, ~ o'
In particular, in the low-frequency limit we simply recover the expected behaviour
—Im(Zyo,) ~ 8 Nw,/w. As seen from figure 4(a) the real part Re Z shows relatively
little dispersion in the ‘anomalous’ frequency range, and is larger in magnitude than
Im Z,,. However, after subtracting the high-frequency limit Z (c0), there is indication of
a corresponding power-law dependence of Re Z,;, leading to CPA behaviour as shown
in the inset in figure 4(a).

In addition we examine some properties of disordered electrodes generated by a
DLA process (Witten and Sander 1981, 1983) on a square lattice. Structures consistent
with the DLA model are known to arise in certain electrodeposition reactions (Argoul
et al 1988). We have grown clusters by aggregation on a horizontal plane surface of
width L, with periodic boundary conditions in the directions parallel to the plane. The
growth process is stopped once a cluster has attained a maximum height y_, = %L.
The relation between the total mass of clusters M (y) below the vertical coordinate y is
found to scale with y as M(y) ~ yP~! with D = 1.63, in reasonable accord with values
for the fractal dimension of two-dimensional DLA clusters reported in the literature
(Meakin 1983). The clusters are now regarded as one electrode (V' = 0) and the plane
y = L as the counter electrode (V' = 1). Interface and bulk conductance elements are
arranged in analogy to the Koch model.

In calculating the impedance of our DLA electrodes we limit ourselves to o; real.
The general appearance of the results displayed in figure 5 is similar to that in figure
3. Again, for large o, the impedance becomes a constant independent of L whereas
Z;' ~ n(Lys; for o, < ¢*. Here n(L)o* ~ o, and n(L) =~ 2.3LP is the estimated number
of interface bonds.
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Figure 5. Impedance of DLA electrodes versus (real) interface conductance g;. Data
correspond to lattices with L = 64(O) and L = 128(x). Error bars are due to a limited
number of cluster configurations.

In analogy to the Koch model one expects a perfectly blocking DLA electrode
to show CPA behaviour as well. Adopting this hypothesis one would expect, by
analytic continuation, a power-law regime Z(s;) — Z () ~ ¢, " also for o; real. In fact,
subtracting Z (co) from the data of figure 5, there is indication of an intermediate regime
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Figure 6. (a) 4 x 4 cell attached to the Koch boundary used for calculating the renormalised
interface conductance o, (compare figure 2). (b) Simplified equivalent circuit for o] obtained

by neglecting the horizontal bulk conductances in (a). Interface bonds are represented as
-1

capacitors, and R =g .
where the impedance grows more slowly with decreasing o, than in the ‘saturation’
regime where Z ~ ¢;'. A similar observation also holds for the data in figure 3. Our
DLA data, however, are not accurate enough to estimate a corresponding CPA exponent.

3. Renormalisation

For better understanding of our numerical results, we now attempt to calculate the
impedance of the Koch model by a position-space renormalisation method. First we
consider stage N = 1 and calculate the conductance Z,(s;) = Z[! to obtain

Zi(0) = B+ u—py—p3—Pa)oy, (M
where
u =g/
p; = (Bu+1)p,
py=[B+wGu+1)—1]p, 1 @
Ps=(p3+1)/2(u+1)
and

pr=2+w@+ w1 —81+uw —CB+wGBu+1)+20+w)B+wGu+]" (3

Next the system at stage N is mapped onto a system at stage N — 1 by collapsing
a 4x4 cell into one node as indicated in figure 2. In this transformation the bulk
conductance remains unchanged, oy = o,,. The transformed interface conductance o, is
identified with the conductance (in vertical direction) of the cell depicted in figure 6(a)
which is calculated numerically. From the (N — 1) iterate of ¢;, denoted by ai(N D we
finally obtain

Iy(o) =z, M) )

Explicit results from this relation up to N = 8 are shown by the full curves in figures
3 and 4. For o, real (figure 3) the agreement with the numerical data is excellent. Note
that as N — o the quantities ai(N ) converge towards the fixed point 0; ~ 1.23¢,, which

determines the large-N limit Xy (0;) - Z,(5;) = 3.170,,.
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Setting 6, = iwC, our renormalisation procedure correctly predicts an intermediate
frequency range where, on lowering the frequency, the increase in ImZ, is weaker
than the ™! dependence at high and low frequencies. Indeed one can show that for
larger N a power-law regime develops with an exponent 7 ~ 0.78, which, however, is
somewhat larger than the numerical result » =~ 0.6 from section 2.

Next we briefly consider the sensitivity of the results under further approximations.
An analytic expression for o] can be obtained by putting the upper and lower part of
figure 6(a) in series:

o] ~ [2op) ' + Z e (5)

Here X,(0,) is given by equation (1). Expression (3) reproduces the numerical value
for o] within a few percent for arbitrary real g; but becomes less reliable for complex
arguments. An even simpler, but still reasonable approximation for o] is represented
by the equivalent circuit of figure 6(b) which results from figure 6(a) by omitting all
horizontal bonds. One is then considering a hierarchical network which differs, however,
from previous studies of pore models (e.g. Liu 1985) by the fact that connections to
ground via interface bonds occur only on the smallest length scale. Results from this
model agree qualitatively with the full curves in figures 4 and 5 and lead to a similar
estimate of #, but lead to substantially larger deviations from the numerical data points
at high frequencies.

4. Conclusions

To summarise, we have studied transport across fractal interfaces both by numerical
simulation and by renormalisation. The electrostatic model we have used relates to
the problem of the impedance of an electrolyte in contact with a rough electrode.
Generally there are two limiting regimes. One is dominated by the bulk electrolyte,
oy, < |o;]. Then the impedance is essentially independent of the number of generations
in the fractal construction. In the opposite limit |g;| — O the current penetrates even the
smallest cavities and the impedance is determined by the actual length of the interface
depending on the smallest length that is in the model. This behaviour applies for both
the Koch and the DLA boundary.

Our main results refer to a perfectly blocking Koch electrode with ¢, = iwC. We
have clearly demonstrated the existence of an intermediate frequency range where CPA
behaviour prevails, Z — Z(o0) ~ (iw)™, n ~ 0.6 . This implies a fractional power-law
dependence of the impedance also on the bulk conductivity ¢,. To see this we use
the general scaling form Z(o)) = ¢;!f(s,/06,). Requiring f(x) — f(0) ~ x™" in the
appropriate x interval, we obtain Z —Z (x0) ~ ag'l (Scheider 1975, Sapoval et al 1988).

Regarding experiments, we note that the main features of our model qualitatively
agree with the dynamic impedance of ‘fractal’ electrodes, as observed for example by
Sapoval and Chassaing (1989). In particular, in these latter experiments on highly
ramified electrodes a low-frequency crossover w® was observed such that the length
A = (pyw®)™! is of the order of the macroscopic size L of the electrode. In the last
expression p denotes the bulk resistivity and y the specific capacitance per unit area
of the electrode. Setting o; = o4ay (see section 2) and noting that the ratio o,/|0)
is equivalent to the experimental quantity A, we find in fact that the low-frequency

crossover in our model is in close agreement with the criterion for the crossover length
A~L.
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