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Abstract. We investigate the impedance of two-dimensional electrical networks in the 
presence of a fractal boundary both by numerical techniques and by renormalisation. 
Boundaries generated by a Koch-curve construction and by a DLA process are considered. 
Our results are discussed in connection with measurements of the impedance of electrolytes 
in contact with a rough electrode. 

1. Introduction 

The effect of interface roughness on the impedance of electrolyte/electrode-systems 
has been the subject of a number of recent investigations (Liu 1985, Kaplan et a1 
1987, Sapoval 1987, Bates et a1 1988, and references therein.) In this context, porous 
electrodes are interesting also from a practical point of view as their large surface 
area leads to increased limiting currents in electrochemical devices. Experiments with 
metallic electrodes in the frequency range below - lo5 Hz often show a so-called 
constant phase angle (CPA) response where the total impedance depends on frequency 
according to Z - (iw)-q (Scheider 1975). The exponent v is smaller than unity with a 
tendency to decrease with increasing degree of surface roughness. 

Most attempts in the literature to explain these observations are based on a model 
assuming a constant resistivity within the bulk electrolyte and a certain (complex) 
impedance per unit area associated with the interface. The latter describes displacement 
and reaction of charges within the electric double layer. Under these assumptions one 
may construct an equivalent linear electrical network of constant conductances crb 
within the electrolyte region and conductance elements cri, which are arranged in 
accord with the interface geometry. In simplest terms, ci consists of the double- 
layer capacitance C in parallel with the transfer (Faradaic) resistance 4, such that 
cri = iwC + 4:'. In the ideal case of a perfectly blocking planar electrode it follows 
that Z - (iwC)-' for sufficiently low frequencies, and q = 1. 

In this type of description the detailed electrochemical processes at the interface 
including diffusion currents are ignored (see, for example, Schmickler 1988). Never- 
theless, even these simplified models are not completely understood and there remains 
the problem of how the impedance 2 in such models depends on the geometrical 
characteristics of the interface roughness. In particular, one would like to know the 
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geometrical conditions which lead to a fractional power law Z - ( 0 J - V  with 9 < 1. 
Interfacial boundaries with self-similar structure are of special interest in this context. 
It has been shown that interfaces containing a distribution of deep, essentially linear 
pores with variable width can give rise to a CPA response (Liu 1985, Sapoval 1987), 
and the relation q = 3 - D for the exponent 9 in terms of the fractal dimension D 
has been derived in specific cases although it has been demonstrated not to be general 
(Keddam and Takenouti 1986, Kaplan et al 1987, Sapoval 1987, Sapoval et al 1988). 

The situation is less clear, when vertical and horizontal fluctuations of the boundary 
occur on similar scales. In this case the frequently used procedure of approximating 
the complete network problem by a reduced network with a tractable, hierarchical 
structure may become ambiguous. Alternative attempts to treat the surface roughness 
by perturbational methods (Halsey 1987, Ball and Blunt 1988) may be limited to 
small-amplitude fluctuations. In this situation it seems necessary to study the impedance 
numerically. We undertake here a numerical investigation of two-dimensional networks 
with different fractal boundaries. Most of our results are for boundaries generated 
by a quadratic Koch curve up to stage N = 4 which implies structural self-similarity 
over more than two decades. In the case of a perfectly blocking electrode we find CPA 
behaviour within an intermediate frequency range such that Z -Z(co) - (io)-V, where 
q E 0.6 and Z(o0)  denotes the high-frequency limit of the impedance. The imaginary 
part I m Z  satisfies a fractional power law within an extended frequency interval of 
about three decades. We also consider properties of disordered boundaries constructed 
via a diffusion-limited aggregation (DLA) process. 

Our model of a Koch boundary allows us to set up a renormalisation scheme, 
where renormalised interface elements are constructed from the impedance behaviour 
of 4 x 4  cells attached to the interface. By this method we achieve good agreement 
with our numerical results and even quantitative agreement in the special case of real 
interface conductances. Finally we summarise our results and give comments regarding 
experiments. 

2. Koch and DLA boundaries: numerical treatment 

Let us first investigate the impedance of an electrolyte in contact with an electrode 
of the form of a quadratic Koch curve generated as shown in figure 1. Its fractal 
dimension is D = In 8/ln4 = 1.5. Our system is regarded as an electrical network 
associated with the bonds of a two-dimensional square lattice of size L x L with 
L = 4,. The Koch electrode at stage N is incorporated in the network as illustrated in 
figure 2(a) for N = 2. The counter electrode is represented by the upper edge of the 
lattice and is held at a fixed potential V = 1. Bonds which intersect the Koch curve are 
regarded as interface bonds with conductance oi. Their endpoints below the boundary 
are connected to ground (V  = 0). With the remaining bonds in the region between 
the two electrodes we associate a constant (real) conductance ob representing the bulk 
electrolyte. Periodic boundary conditions are applied in the horizontal directions. 

In comparison with an experimental situation it is to be noted that dealing with 
an N-independent parameter oI actually implies an N-dependent overall size of the 
electrode, L = 4,. Alternatively, considering an electrode with a given overall size L 
and a N-dependent smallest length scale aN = L / 4 N  then oi is related to the physical 
quantity oo which is the conductance per unit length by oi = oouN. 

For our network defined above we solve Kirchhoffs equations by a relaxation 
method. Results for the total impedance Z, for First we have chosen oI real. 
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Figure 1. Generation of the Koch-curve electrode. 
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Figure 2. (a) Lattice of bulk conductances Ob (bold lines) and interface conductances uj 
(dotted lines) across the Koch boundary at stage N = 2. (b )  Lattice obtained from (a )  by 
one step of renormalisation. 
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Figure 3. Impedance 2 , ~  versus (real) interface conductance U,.  Symbols refer to numerical 
data N = 4 0 ,  N = 3 (0) and N = 2 (x) .  Full curves represent renormalisation results. 

boundaries up to stage N = 4 are shown in figure 3. For relatively high interface 
conductance oi 2 ob, the behaviour of the network is dominated by the bulk and 
Z ,  becomes nearly independent of both oi and N. This means that small cavities 
in the boundary are shielded and do not contribute to the total conductance. As 
oi decreases the current starts to penetrate successively smaller cavities until the full 
potential drop is experienced by all the interface bonds. Then the total conductance 
is simply proportional to the N-dependent length of the boundary, Zil - 8,0i. The 
crossover to this regime of saturation occurs near determined by 8,~: - ob. 
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Figure 4. Real part (a) and 
imaginary part (b) of the dynamic 
impedance versus frequency. Sym- 
bols are as in figure 3. Error bars 
explicitly shown refer to cases of 
insufficient convergence of the iter- 
ation. Full curves represent renor- 
malisation results. The straight 
line in (b) corresponds to the be- 
haviour ImZN - co-',60 of data 
with N = 4. Note the difference in 
the vertical scale of (a) and (b). The 
inset in (a)  is the graph of -1m ZN 
versus ReZN (N = 4). 

Next we consider the physically more important case of a perfectly blocking 
electrode with cri = iwC imaginary. In figure 4 we show the real and imaginary parts 
of the impedance versus frequency. Our main observation is that as N increases, the 
imaginary part Im Z, develops a fractional power-law dependence in an intermediate 
frequency regime. Comparing the results for N = 3 and N = 4 we observe that this 
'anomalous' regime extends to lower frequencies with increasing N and terminates on 
the high-frequency side near wo = a,/C. As seen from the figure, our data for N = 4 are 
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very well represented by the fit Im Z, - 0 - q ;  q = 0.60+0.02 within about three orders 
of magnitude in frequency below U,,. Outside that regime we have ImZ, - U-'. 
In particular, in the low-frequency limit we simply recover the expected behaviour 
-Im(Z,ob) z 8 - N ~ O / ~ 1 .  As seen from figure 4(a) the real part Re Z, shows relatively 
little dispersion in the 'anomalous' frequency range, and is larger in magnitude than 
Im Z,. However, after subtracting the high-frequency limit Z(co), there is indication of 
a corresponding power-law dependence of Re Z,, leading to CPA behaviour as shown 
in the inset in figure 4(a). 

In addition we examine some properties of disordered electrodes generated by a 
DLA process (Witten and Sander 1981, 1983) on a square lattice. Structures consistent 
with the DLA model are known to arise in certain electrodeposition reactions (Argoul 
et a1 1988). We have grown clusters by aggregation on a horizontal plane surface of 
width L, with periodic boundary conditions in the directions parallel to the plane. The 
growth process is stopped once a cluster has attained a maximum height y,,, = aL. 
The relation between the total mass of clusters M ( y )  below the vertical coordinate y is 
found to scale with y as M ( y )  - yD-' with D = 1.63, in reasonable accord with values 
for the fractal dimension of two-dimensional DLA clusters reported in the literature 
(Meakin 1983). The clusters are now regarded as one electrode (V = 0) and the plane 
y = L as the counter electrode ( V  = 1 ) .  Interface and bulk conductance elements are 
arranged in analogy to the Koch model. 

In calculating the impedance of our DLA electrodes we limit ourselves to oi real. 
The general appearance of the results displayed in figure 5 is similar to that in figure 
3. Again, for large oi the impedance becomes a constant independent of L whereas 
Z,' n(L)oi for oi 4 0'. Here n(L)o' - ob and n(L) ?: 2.3LD is the estimated number 
of interface bonds. 

-0 5 1  

X 

0 

X 0 

X 0 
x 0 

X 

6 

Figure 5. Impedance of DLA electrodes versus (real) interface conductance ui. Data 
correspond to lattices with L = 64(0) and L = 128(x). Error bars are due to a limited 
number of cluster configurations. 

In analogy to the Koch model one expects a perfectly blocking DLA electrode 
to show CPA behaviour as well. Adopting this hypothesis one would expect, by 
analytic continuation, a power-law regime z(ai) - ~ ( m )  or' also for oi real. In fact, 
subtracting Z(m) from the data of figure 5, there is indication of an intermediate regime 
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Figure 6. (a) 4 x 4 cell attached to the Koch boundary used for calculating the renormalised 
interface conductance ul' (compare figure 2). (b )  Simplified equivalent circuit for U: obtained 
by neglecting the horizontal bulk conductances in (a). Interface bonds are represented as 
capacitors, and R = U ; ' .  

where the impedance grows more slowly with decreasing oi than in the 'saturation' 
regime where Z - 0;'. A similar observation also holds for the data in figure 3. Our 
DLA data, however, are not accurate enough to estimate a corresponding CPA exponent. 

3. Renormalisation 

For better understanding of our numerical results, we now attempt to calculate the 
impedance of the Koch model by a position-space renormalisation method. First we 
consider stage N = 1 and calculate the conductance Xl(oi) = Z;' to obtain 

p1 = 2(1 + u)(4 + ~ ) [ l  - 8(1 + U)' - (3 + u ) ( ~ u  + 1) + 2(1 + ~ ) ( 3  + u ) ~ ( ~ u  + 1)I-l. (3) 
Next the system at stage N is mapped onto a system at stage N - 1 by collapsing 

a 4x4 cell into one node as indicated in figure 2. In this transformation the bulk 
conductance remains unchanged, ob = o b .  The transformed interface conductance bi is 
identified with the conductance (in vertical direction) of the cell depicted in figure 6(a)  
which is calculated numerically. From the ( N  - 1) iterate of oi, denoted by we 
finally obtain 

X N ( O i )  = cl ( o p ) .  (4) 
Explicit results from this relation up to N = 8 are shown by the full curves in figures 
3 and 4. For oi real (figure 3) the agreement with the numerical data is excellent. Note 
that as N -+ CO the quantities o(N) converge towards the fixed point ifi = 1.230,, which 
determines the large-h' limit XN(oi) -, Xl(Fi) 3.170~. 
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Setting oi = ioC,  our renormalisation procedure correctly predicts an intermediate 
frequency range where, on lowering the frequency, the increase in ImZ, is weaker 
than the 0 - I  dependence at high and low frequencies. Indeed one can show that for 
larger N a power-law regime develops with an exponent f j  1: 0.78, which, however, is 
somewhat larger than the numerical result q 2: 0.6 from section 2. 

Next we briefly consider the sensitivity of the results under further approximations. 
An analytic expression for oi can be obtained by putting the upper and lower part of 
figure 6 ( a )  in series: 

Here C,(oi) is given by equation (1). Expression (3) reproduces the numerical value 
for oi within a few percent for arbitrary real o1 but becomes less reliable for complex 
arguments. An even simpler, but still reasonable approximation for o[ is represented 
by the equivalent circuit of figure 6 ( b )  which results from figure 6 ( a )  by omitting all 
horizontal bonds. One is then considering a hierarchical network which differs, however, 
from previous studies of pore models (e.g. Liu 1985) by the fact that connections to 
ground via interface bonds occur only on the smallest length scale. Results from this 
model agree qualitatively with the full curves in figures 4 and 5 and lead to a similar 
estimate of Q, but lead to substantially larger deviations from the numerical data points 
at high frequencies. 

4. Conclusions 

To summarise, we have studied transport across fractal interfaces both by numerical 
simulation and by renormalisation. The electrostatic model we have used relates to 
the problem of the impedance of an electrolyte in contact with a rough electrode. 
Generally there are two limiting regimes. One is dominated by the bulk electrolyte, 
o b  Ioi/. Then the impedance is essentially independent of the number of generations 
in the fractal construction. In the opposite limit loil -, 0 the current penetrates even the 
smallest cavities and the impedance is determined by the actual length of the interface 
depending on the smallest length that is in the model. This behaviour applies for both 
the Koch and the DLA boundary. 

Our main results refer to a perfectly blocking Koch electrode with oi = i d .  We 
have clearly demonstrated the existence of an intermediate frequency range where CPA 
behaviour prevails, Z - Z ( m )  - (ico-v, q = 0.6 . This implies a fractional power-law 
dependence of the impedance also on the bulk conductivity ob.  To see this we use 
the general scaling form z(oi) = oilf(oi/ob). Requiring f(x) -f(co) - x-q in the 
appropriate x interval, we obtain Z -Z(m) - cr:-' (Scheider 1975, Sapoval er al 1988). 

Regarding experiments, we note that the main features of our model qualitatively 
agree with the dynamic impedance of 'fractal' electrodes, as observed for example by 
Sapoval and Chassaing (1989). In particular, in these latter experiments on highly 
ramified electrodes a low-frequency crossover 0. was observed such that the length 
A = (pya')-' is of the order of the macroscopic size L of the electrode. In the last 
expression p denotes the bulk resistivity and y the specific capacitance per unit area 
of the electrode. Setting oi = GoaN (see section 2) and noting that the ratio ob/laol 
is equivalent to the experimental quantity A, we find in fact that the low-frequency 
crossover in our model is in close agreement with the criterion for the crossover length 
A - L. 
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